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SUMMARY 
In a stationary weak sound wave the four gas dynamical 

quantities, entropy, stagnation enthalpy, mass flow per unit 
area and impulse per unit area are constant. The six processes 
in which pairs of these four variables are kept constant are 
studied for the case of any single phase fluid or mixture of 
fluids in equilibrium, and it is shown that the remaining variables 
are stationary at sonic points. Such points are shown to occur 
once only in each process and are identified as maxima or minima, 
on the assumption that the fluid is a normal one which expands 
on heating at constant pressure and for which (L32p/L3v2)s is 
positive. 

Newton’s theory of sound assumed that the fluid temperature 
was invariant. Across a stationary Newtonian sound wave, the 
four quantities, temperature, mass flow and impulse per unit 
area, and a dynamical variant of the Gibbs function are constant. 
The six processes in which pairs of these four variables are kept 
constant are studied, and it is shown that the remaining variables 
are stationary at points where the fluid speed equals Newton’s 
sound velocity. These points are shown to occur once only in 
each process and are identified as maxima or minima with the 
further proviso that (L32p/av2)Tf is positive. 

The two sets of processes have one member in common, 
that usually referred to as the Rayleigh line. The Fanno line 
and the usual isentropic ‘ nozzle ’ process also belong to the first 
set. 

Finally, the variation of stagnation temperature and pressure 
in some of the processes and in stationary shocks is investigated. 

1. INTRODUCTION 
Steady, one-dimensional gas dynamics has been analysed by many 

authors, particularly for the case of a perfect gas. A certain amount of 
work has also been done for arbitrary, single-phase fluids in equilibrium, 
with properties limited only by stability and the laws of thermodynamics 
{Courant & Friedrichs 1948 ; Kline & Shapiro 1954). It has been shown, 
for instance, that the speed of sound is a critical velocity for isentropic 



J .  A. Sherclt8 

nozzle flows, and for Rayleigh and Fanno processes, whatever the fluid, 
This is too striking a fact to be pure coincidence. It is the aim of this paper 
to construct a symmetrical mathematical treatment of these three and 
related processes, showing the dominant role of the sound speed. 

The importance of studying arbitrary fluid dynamics is increasing 
since high-speed flows in which real gas behaviour, reaction, dissociation 
and ionization occur are becoming of practical interest. The theory of the 
arbitrary fluid in this and other papers is applicable to reactive gas mixtures 
provided only that at each section of flow investigated there is thermodynamic 
equilibrium. The speed of sound occurring in the analysis refers to the 
speed of waves of low enough frequency for chemical equilibrium to prpvail. 
The theory cannot be applied to detonation waves in pre-mixed gases since 
there is true equilibrium on only one side of these waves. The flow behind 
and relative to a detonation wave can be sonic according to the Chapman- 
Jouguet rule, whereas behind a shock wave in a reactive gas mixture, which 
is in equilibrium on both sides of the wave, the flow must be subsonic. 
This last fact is evident from the work of Kline & Shapiro (1954), provided 
the gas mixture’s properties are such that (azp/azP)s and (ap/as), are constant 
in sign. p ,  z1 and s are pressure, specific volume and entropy, respectively. 

Gases such as HC1 which dissociate without total molal or volumetric 
change may be treated by perfect gas dynamical methods (Shapiro & 
Hawthorne 1947) with allowance for variation in effective specific heats. 

2. THE GAS DYNAMICAL RELATIONS 

Reactive or inert gas mixtures and single phase pure substances in 
equilibrium are usually characterized by the fact that any two independent 
properties define their thermodynamic state uniquely. As a generalization 
of this, the state of each section of flow in a one-dimensional gas dynamical 
process may be defined by three independent properties. One choice would 
be the velocity u together with any two independent thermodynamic ones. 
Another selection is F,  G and H ,  in which 

F = p +pu2, the impulse per unit area, 

G = pu, the mass flow rate per unit area, and 

H = h + &u2, the stagnation enthalpy. 

p and h denote density and specific enthalpy respectively. For convenience 
F is chosen equal to p +pu2 rather than the more usual quantity 

( p  + pu2) x (duct area of cross-section). 

FIG represents this latter quantity per unit rate of mass flow. The symbol H 
is chosen rather than h, to avoid complicated suffices. Note that F = p + Gu. 

Specified values of F, G and H usually correspond to two possible states, 
such as occur on the two sides of a stationary shock wave. Across a 
stationary weak shock or acoustic wave, s is constant in addition to F, G 
and H ,  a very significant fact. 
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The familiar reversible, adiabatic ' nozzle ' process and Rayleigh and 
Fanno processes each involve the invariance of two of the properties F,  G,. 
H and s. There are three other such processes. All six will be studied 
simultaneously. With suitable assertions regarding reversibility, adiabatic 
or other conditions, the six processes may be interpreted physically in 
various ways. Variation of G will be taken to correspond to duct area 
change, although it could equally well correspond to change in the mass 
flow due to injection or withdrawal of fluid. Typical interpretations of 
the six processes appear in table 1. 

Typical interpretation 

Reversible, adiabatic ' nozzle ' process with area change. 
Rayleigh process. Frictionless, constant area process with heat 

exchange or Ohmic heating, etc. 
Fanno process. Adiabatic, constant area process with force in 

direction of motion due to wall friction, wire mesh, electromagnetic 
forces in ionized gas, etc. 

Reversible, adiabatic work exchange in a duct of constant area by 
actuator discs, electromagnetic induction, etc. 

Reversible, adiabatic process where work exchange and area change 
combine to keep F constant. 

Adiabatic ' nozzle ' process in which F is constant owing to friction. 

No external energy exchange. 

Table 1 .  

The last two cases are rather artificial, and are more interesting 
mathematically than practically. There is difficulty in interpreting F 
when G is not constant. More artificial interpretations of the first four 
processes are also possible. For example, the Fanno process can represent 
a reversible process with suitably synchronized work and heat exchanges. 

There being only three independent properties of a flow-section, F, G, 
H and s must be related. The differential equation expressing this relation 
is 

which follows from the definition of the variables and from the equilibrium 
relation T ds = dh - dp/p, T being the absolute temperature. Denoting 
the invariance of quantities by suffices, we then have 

There are six such relations each involving two differentials. We shall 
proceed to relate all twelve differentials and show in particular that all 
vanish when the state is sonic. In  a process with two of F,  G, H and s 
constant, at points where the remaining two variables are stationary, the 
small change occurring between two closely adjacent flow-sections having 
the same values of F, G, H and s is virtually a stationary sound wave. 
Thus M ,  the local Mach number, must be unity. M ,  or ula, where a is. 

dF+pTds  = p dH+u dG, (1) 

dFHs = U dGH,, etc. (2) 
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the isentropic sound speed .\/(ap/ap),, is another gas dynamical property 
of each flow-section. A flow-section in a given state can be imagined as 
lying within any of innumerable processes, including the six currently 
under consideration. 

From (I), u = (i?F/aG), and p = (aF/aH),, and hence 

(au/aH)Gs = (ap /aG)Hs*  (3J 

There is a large array of these Maxwell-type relations, from which it is 
.evident that all the differentials dH,,, dG,,, etc., will vanish simultaneously 
for flow-sections in certain states, provided there is no irregular behaviour 
of the quantities u, p, etc. Moreover, it is easily shown that 

dGHs = p( 1 - M 2 )  du, (4) 

so that sonic states are the relevant ones as expected. 
To  provide a firmer basis for the analysis, it is convenient to take u as 

the major independent variable. Quantities of the type (dG/au),, written 
G;,,, will be studied and related. 

From ( 3 )  

All the differential coefficients may be related in this way or by shorter 
alternative methods. 

It is easily shown with the help of (2) that 

Also, 
G&,s = G A s + ( E ) m H k s  = Gis+($)( - ‘9). 

Hence Gbs( 1 + M2)  = Gks. 

Hence 
(9) 

Equations (2) and (4) to (9), now permit all the derivatives with respect 
The to u to be evaluated. 

example H& = - u(1- M2) /M2 illustrates the use of the table. 
Table 2 lists them as multiples of (1 - M2) .  
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It is necessary to study the behaviour of the quantities appearing in 
the table before the criticality of the sonic state can be clearly asserted. 
M 2  is well-behaved, as the speed of sound must always be defined in real 
substances. The  quantity appearing in the ( F ,  G) Rayleigh case is 

H ,  s 
fisentropic 
‘ nozzle ’) 

___ 

which is well-behaved except at such rare points as water at 4°C at 
atmospheric pressure, where (aT/ap)T, tends to infinity. C,, the specific 

1 1 0 0 

Constant I F i p r r  I Ts’lir 1 H / u  

0 0 

Table 2. Derivatives with respect to  ZL as multiples of ( l - A P ) .  

heat at constant pressure, must be positive for stability. ‘This is consistent 
with the findings of Kline & Shapiro (1954) who pointed out the criticality 
of the sign of (+/as),, and hence of (as/+),. The specific volume 23 is the 
reciprocal of p .  The quantity appearing in the ( F ,  H)-case i s  

of which both terms are positive, except in states where there is thermal 
contraction. Apart from this possibility, is finite, positive and 
non-zero. ’rhe quantity appearing in the (G, H )  Fanno case, 

is seen to be finite and positive except conceivably in  a thermal contraction 
region, by reference to (11) above. We may note that 

F.M, 2T 
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which is the quantity studied by Kline & Shapiro (1954) in their discussion 
of Fanno processes. They considered it very rinlikely that T +  o(ap/as),. 
would ever be negative for real fluids. 

Summing up, we may say that if the above special states are excluded, 
the pair of the variables F, G, H and s that are not kept constant are 
stationary when and only when M = 1. 

The  next question to consider is whether these stationary values are 
maxima or minima. Kline & Shapiro (1954) have studied the (H,s ) ,  
( F ,  G) and (G, H )  cases and have shown separately in each case that the 
sign of (a2p/av2),7 is the crucial factor. This also decides whether com- 
pressive acoustic waves steepen into shocks, and whether shocks must be 
compressive. 

T h e  six cases, keeping pairs of F, G, H and s constant, will now be 
treated in parallel to determine the nature of the stationary values as u varies. 
T o  fix the change of sign of F ,  G', H' or s' at the sonic state, it is necessary 
to  study aM2/au at the sonic state. It is found that aM2/du takes the same 
value in all six cases when M = 1. This follows from the five equations : 

in which the last terms vanish when M = 1, provided (dM2/ds),,,, 
(aM2/aG),,, (dM2/&)au are not infinite when M = 1. These quantities 
are respectively equal to 

when PI = 1. Now 

and no singularity upon isentropics, such as would make these second 
derivatives infinite, appears to be possible. Furthermore, 

Equation (11) indicates that (ap/ap), is not infinite, and so (aa2/as), is not 
infinite. 

We conclude that aM2/du takes the same value when M = 1, whichever 
pair of F, G, H and s is kept constant. The  common value is most easily 
evaluated in the (G,s) case, where U/TJ is constant: 

when M = 1. 
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Kline & Shapiro (1954) indicated that (i32p/i3va)s is positive for all single 
phase fluids for which accurate data are available. We therefore assume 
that (i32p/i3v2)s is positive, and also that there is no thermal contraction, 
in what follows. I t  is then possible, using (lo), (11) and (12)’ to deduce 
the nature of the stationary values of F, G, H and s at sonic points from 
the change in sign in the relevant derivative with respect to u. Table 3 
lists the results. It should be observed that the sonic points have the same 
nature as for a perfect gas. 

Constant 

H ,  s (isentropic nozzle) 
G, 15 (Fanno) 
F ,  G (Rayleigh) 
G, s 
F ,  s 
F ,  H . 

Ta 

Nature of sonic points 

Fmax.; Gmax. 
F min.; s max. 
H rnax.; s max. 
F min.; H min. 
G rnax.; H min. 
G max.; s max. 

: 3. 

If we assume that the variation of M ,  F, G, H and s with u in the above 
cases is continuous, it follows that only one sonic point occurs in each 
process (if ( P p / a ~ ~ ) ~  is fixed in sign) since maxima and minima must occur 
alternately. (Sonic points of inflexion would require aM2/au and 
(i3zp/az~2)s to vanish.) This fact was deduced by Kline & Shapiro (1954) 
from a different argument in the Fanno and Kayleigh cases. 

3. THE INFLUENCE OF THE SPEED OF NEWTONIAN SOUND 

Newton’s calculation of the speed of sound in air proved to be too low 
because of his assumption that sound propagation was an isothermal process 
instead of an isentropic one. Nevertheless the speed of Newtonian sound, 
which will be denoted by n to distinguish it from the adiabatic sound speed a, 
proves to have some physical significance. 

The symbol N will be used for the ‘isothermal Mach number’, the 
ratio u/n.  The specific heat ratio y is equal to N 2 / M 2  because 

y is always greater than unity since cp -c ,  = - T(av/i3T)~(3p/ae~),, and 
( i 3 p j a ~ ) ~ ~  must be negative for stability. y reaches unity only at  points of 
zero thermal expansion where (av/aT),  vanishes. In passing, it it worth 
noting that the speeds of adiabatic and Newtonian sound are (yp/p)1/2 and 
( ~ / p ) l / ~  for any fluid which obeys Boyle’s law, p/p = f ( T ) .  A reactive gas 
mixture whose mean molecular weight changes does not satisfy this 
condition. 

It is well known that, for a perfect gas undergoing a Rayleigh process, 
the temperature has a stationary value when M = y-1’2 and N = 1. This, 

2f2 



however-, is a general result, applicable to all single phase fluids in 
equilibrium, for 

u2 = ( 2)flcT and a2 = ($),,. 
It follows that 

and hence that 

1' l-yMz (2r) =-- From this we have 

which vanishes when M = y-12. If the fluid is a reactive gas mixture, 
y must be taken as the eflectizte specific heat ratio, allowing for reaction. 

A flow-section such that N = 1, i.e. capable of sustaining a weak steady 
Newtonian sound wave in which F, G and T do not change significantly, 
obviously corresponds to a state where T is stationary if F and G are fixed 
as in a Rayleigh process. It also corresponds to the section when G and 
the duct area have stationary values in a reversible, isothermal nozzle process. 
In fact there are again six simple processes for which n is the critical speed. 
A unified, symmetrical treatment is again possible if a new property 2, 
a dynamic form of Gibbs function, is introduced such that 

[ being the usual Gibbs function per unit mass, h -  Ts. Z is not the 
stagnation Gibbs function, which is H -  Tos, where To is the stagnation 
temperature. 2 has no obvious physical significance except in isothermal 
cases where its change measures reversible work exchanges (see 4 4). 'rhus 
Z is constant in the reversible, isothermal nozzle process. 'The lack of 
significance of Z is related to the fact that the datum for s is arbitrary and 
therefore Z contains an arbitrary multiple of T when T varies. The two 
cases where 2, but not T ,  is constant will not be considered further. 

RvG C# 1 - M 2 '  

Z =  H - T S  = C+tu2, 

Constant 

F, G 
T,  z 
G, T 

F,  T 

Typical interpretation 
- 

Rayleigh process, as already discussed. 
Isothermal, reversible ' nozzle ' process with area change. 
Isothermal, constant area process with state change produced by wall 

Isothermal process in which area change and wall friction or work 
friction or work exchange. 

exchange combine to keep F constant. 

Table 4. 

'The four variables F, G, T and Z are related by the equation 

dF = p d.Z+ps d T + u  dG. (13 )  
The four significant cases in which pairs of the variables are kept constant 

are interpreted in table 4, 
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This situation may be analysed in a manner completely analogous to  
For brevity, only the main results will be 

Again u is taken as the main independent variable and primes 
Table 5 lists these derivatives as 

that in the foregoing section. 
presented. 
denote differentiation with respect to u. 
multiples of (1 - N2) .  

Constant G ' l P  P f P U  

T,  z 
' nozzle ') 

(isothermal 1 1 

- - 

F , G ,  0 0 (Rayleigh) 

G, T 

p ,  T (1 t W)-' 0 

0 - N-2 
- 

s T'lu Z'lu 

0 0 

0 -N-2 

0 -(1 ,-N2)-1 

It is necessary to study the behaviour of the quantities appearing i n  
table 5 before the criticality of the Newtonian sonic state can be 
clearly asserted. N 2  is well behaved, since two-phase states in which 
(ap/ap),. and n2 vanish are excluded. Also, 

(aT/+) , /N2 = - ( a T / a p ) p / U 2 1  

which is positive and finite if thermal contraction is excluded. Note that 
the factor s also occurs in the quantity sT'/u so that its sign is irrelevant 
to the behaviour of T in the Rayleigh case. 

The  conclusion is that with the above restrictions the pair of the variables 
F, G, T and Z that are not kept constant are stationary when and only when 
N = 1. The  nature of these stationary points depends upon the sign of 
aN2/du there. 

In the (G, T )  case, it is easily shown that 

when N = 1 (14) 

It is also easily demonstrated that aN2/du takes this same value at the 
Newtonian sonic point in all four cases. The  analysis is similar to that 
in $2, with N ,  n, T ,  Z and 5 replacing M ,  a, s, H and h. The condition 
for aN2/au to be identical is found to be that (an2/iaT),, which is equal to 
- u2(Ps/~w2)TT, and (dn2/jdp)7~, which is equal to (Pp/dp2)7., should not be 
infinite. No singularity upon isothermals such as would make these 
quantities infinite appears to be possible. We conclude that in all four 
cases (14) holds. 'The derivative ( a z p / W ) l , .  is usually positive, but can 
become negative near the critical point for pure fluids. If we assume that 



Constant 

F, G (Rayleigh) 
T,  Z (isothermal nozzle) 
G, T 
F ,  T 

T 

Nature of Newtonian sonic 
points 

T max. ; 2 min. (if s , . 0) 
F max. ; G max. 
F min.; Z min. 
G max.; Z max. 

____-__-- 

,-. 

N= I 

M- I 

-SUPERSONIC / 
I 

s 
Figure 1 .  The Rayleigh Line, for the case 

(azp/az'2)s or y' > 0, (+daT),!-- 0. 

If we assume that the variation of F, G, T and Z with u in the above 
cases is continuous, it follows that only one point at which N = 1 occurs 
in each process (if (azp/i3vz)yl is fixed in sign) since maxima and minima 
must occur alternately and points of inflexion would require (a2p/avz)2t to 
vanish. 

This, and the corresponding result for points at which M = 1, con- 
strains a Rayleigh line on the ( T ,  $)-plane always to have the form familiar 
for the perfect gas case, illustrated in figure 1. The subsonic and supersonic 
branches cannot cross because this would imply two flow-sections with the 
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same values of 1' and s, and hence in the same thermodynamic state with the 
same values of a and p ,  but with differing Mach numbers and velocities. 
But F = p + Gu, F and G being constant, which shows that for a given 
value of p ,  u can have only one value. Thus a crossing is precluded. 

4. SOME OTHER CONSIDERATIONS 

When propulsive effort is the prime concern, the quantity 

( p  + pu2) x (duct area of cross-section) 

is of interest. This quantity is represented by FIG per unit rate of mass 
flow, 1/G being the area per unit rate of mass flow. It  is possible to develop 
the analysis using the four variables F/G, liG, H and s, which are related 
by the equation 

ud(F/G)  + Tds  = dH+pu d ( l / G ) .  

The results dd€er little from those in (i 2, there being only two fresh processes 
involved. These are the cases where FIG and H or s are constant. For these 
cases 1/G and s or H ,  respectively, are stationary at the sonic point. 

* Another approach is offered by the selection of the four variables H, p ,  
u and s for analogous treatment. The basic relation here is 

p d H  = d p + p T d s + G d u .  

No critical point like the sonic point occurs in this case, however. For 
instance, when H and s are fixed, p is stationary only when u and G vanish. 
Another case belonging to this family is that where s, p and hence the 
thermodynamic state are fixed. It corresponds to cases where the kinetic 
energy is converted reversibly into work by idealized impulse turbines or 
electromagnetic induction. 

There are obviously many other similar, alternative selections of variables 
possible. 

Interpretating the individual cases physically reveals an asymmetry in 
the way that heat and work influence the problem. In reversible cases, 
the external heat exchanged between two adjacent flow-sections is Tds  
per unit mass flow, but the corresponding work quantity cannot be expressed 
in terms of any single perfect differential in general. Alternative, general 
expressions for dW, the external work exchanged between two adjacent 
flow-sections per unit mass flow in a reversible process, are 

Again the sonic point is not critical. 

J W = T dS - dH = - (U du + dplp) = (U dG - dF)/p = - d% - s d T.  

The difference between d W and the actual work exchanged in an irreversible 
case is the dissipation. i n  reversible cases without work exchange such 
as the two nozzle processes and the Rayleigh process, dW vanishes. This 
will be recognized as indicating that Euler's equation 

u du + dp/p = 0 

is applicable. 
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Gas dynamical analysis frequently makes use of the stagnation state 
corresponding to a given flow-section. This state, usually denoted by the 
suffix 0, is defined as that for which 

The stagnation temperature To is of interest mainly for substances for which 
h is a function of temperature only, as for a perfect gas. For all normal 
fluids To is larger than T,  the ' static ' temperature, since H is always greater 
than h, and 

24, = 0, h, = H ,  s, = s. 

provided thermal contraction is excluded. 
Variation of the stagnation pressure p,, is given by the relation 

dp, = p,(dH- I; d ~ ) .  

p,, is obviously constant in the isentropic nozzle process. 
process, H is constant and 

Thus if the process is irreversible and adiabatic, p ,  must decrease. 

In a Fanno 

dp, = -PO To ds. 

In a Rayleigh process, dH = T ds and 

d'" = -PO( To - T )  ds. (15) 
Thus the sonic point is the point of minimurn p,, for normal fluids without 
thermal contraction and for which (a2p/au2)s is positive. 

In  the process with s and F or G constant, p ,  behaves qualitatively 
like I€, reaching a minimum at the sonic point for normal fluids. In the 
( F ,  H )  process it is again minimum when M = 1 since s is then a maximum. 

Thus, of the six F, G, H ,  s cases, p ,  is constant in one case and is minima1 
at the sonic point in all the others for normal fluids. 

In  the isothermal nozzle process, dH = T d s  and (15) again applies. 
Neither p ,  nor s has stationary points in this case, however. 

Across a stationary shock, H is constant whereas s always increases. 
I t  follows that p ,  always decreases because (ap,/as), = -po T,, < 0. 

5 .  CONCLUDING REMARKS 

One conclusion of the analysis is to confirm and generalize the result 
of Kline & Shapiro (1954) that the gas-dynamical behaviour of single-phase 
fluids in equilibrium is qualitatively similar to that of a perfect gas, provided 
that there is no thermal contraction and that (azp/avz)s is positive. The 
additional demand that (a2p/du2)1. be positive is made. 

The speeds of adiabatic and Newtonian sound are seen to be significant 
since a flow-section where the velocity is sonic is capable of undergoing 
an infinitesimal acoustic-type change in which F and G together with 
either s and H (if M = 1) or T and Z (if N = 1) do not change. It is then 
apparent, for instance, why in a Rayleigh process with F and G constant, 
s or I' is stationary at the two types of sonic point. 
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The  tendency of nozzle, Kayleigh and Panno processes to choke when 
the velocity becomes sonic is well known. The  similar choking occurring 
in the (G, s), reversible, adiabatic work-exchange process is perhaps a neu- 
result. The  minimum value of H which occurs at the sonic point means 
that a limit is placed on the work that may be extracted reversibly in a duct 
of constant cross-sectional area. The  comparable process mentioned in Q 4, 
in which the duct area varies in such a way that work extraction changes 
only the kinetic energy and not the thermodynamical state of the fluid, shows 
no choking tendency. The  limit on the work extraction here is provided 
by the growth in duct area as the velocity falls. 
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CORRIGENDUM 

“Wave formation in laminar flow down an inclined plane ”, by 
‘l’. BROOKE BENJAMIN (J .  Fluid A4erh. 2, 1957, 554). 

Page 560. In equation (3 .11)  the equals sign following the first term 
should be replaced by a minus sign. 

Page 570. I n  equation (5.10) the numerical factor should be replaced 
by 0.448, and in equation (5.12) the numerical factor should be replaced 
by 040783. Equation (5 .13)  should read as 

d = e~p{0-108R’!~)). 


